Direct Electrochemical Capture and Release of Carbon Dioxide Using an Industrial Organic Pigment: Quinacridone**

نویسندگان

  • Dogukan Hazar Apaydin
  • Eric Daniel Głowacki
  • Engelbert Portenkirchner
  • Niyazi Serdar Sariciftci
چکیده

Limiting anthropogenic carbon dioxide emissions constitutes a major issue faced by scientists today. Herein we report an efficient way of controlled capture and release of carbon dioxide using nature inspired, cheap, abundant and non-toxic, industrial pigment namely, quinacridone. An electrochemically reduced electrode consisting of a quinacridone thin film (ca. 100 nm thick) on an ITO support forms a quinacridone carbonate salt. The captured CO2 can be released by electrochemical oxidation. The amount of captured CO2 was quantified by FT-IR. The uptake value for electrochemical release process was 4.61 mmol g(-1). This value is among the highest reported uptake efficiencies for electrochemical CO2 capture. For comparison, the state-of-the-art aqueous amine industrial capture process has an uptake efficiency of ca. 8 mmol g(-1).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Carbon Dioxide Capture on Metal-organic Frameworks with Amide-decorated Pores

CO2 is the main greenhouse gas emitted from the combustion of fossil fuels and is considered a threat in the context of global warming. Carbon capture and storage (CCS) schemes embody a group of technologies for the capture of CO2 from power plants, followed by compression, transport, and permanent storage. Key advances in recent years include the further development of ne...

متن کامل

Electrochemical Capture and Release of CO2 in Aqueous Electrolytes Using an Organic Semiconductor Electrode

Developing efficient methods for capture and controlled release of carbon dioxide is crucial to any carbon capture and utilization technology. Herein we present an approach using an organic semiconductor electrode to electrochemically capture dissolved CO2 in aqueous electrolytes. The process relies on electrochemical reduction of a thin film of a naphthalene bisimide derivative, 2,7-bis(4-(2-(...

متن کامل

Electrochemical SERS study on a copper electrode of the insoluble organic pigment quinacridone quinone using ionic liquids (BMIMCl and TBAN) as dispersing agents.

SERS detection of quinacridone quinone (QAQ), an insoluble synthetic organic pigment relevant to modern artworks, is reported here. The use of ionic liquids (BMIMCl and TBAN) as dispersing agents has allowed us to carry out electrochemical SERS experiments of QAQ in aqueous solution using a Cu electrode. No SERS spectra were obtained either from the ionic liquids (ILs) or from QAQ when silver/g...

متن کامل

Study and Comparison of the carbon sequestration by Atriplex canescens and Hulthemia persica in Nowdahak Range Research Station, Qazvin province

Greenhouse gases (GHG) are a serious threat to humans and environment. Greenhouse gases have been different sources, but main factors are fossil fuels, industrial processes, deforestation and agriculture. What is now more than ever before should be considered according to the role of forests and rangelands in atmospheric carbon sequestration? Carbon sequestration is to changes in atmospheric ca...

متن کامل

Solution SERS of an insoluble synthetic organic pigment-quinacridone quinone-employing calixarenes as dispersive cavitands.

A possibility of getting SERS spectra of insoluble aromatic compounds in colloidal silver solutions is described. The method tested for the organic pigment quinacridone quinone consists of dispersing it in calix[n]arenes. The potentials of such cavitands, both as dispersing and as silver functionalization agents, is reported as a function of the substitution in their lower rim and their cavity ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 53  شماره 

صفحات  -

تاریخ انتشار 2014